Practical Reconstruction Schemes and Hardware - Accelerated Direct Volume Rendering on Body - Centered Cubic Grids

نویسنده

  • Oliver Mattausch
چکیده

It is well known in the signal-processing community that the Body-Centered Cubic grid is the optimal sampling grid in 3D. In volume visualization, the Cartesian grid is by far the most popular type of grid because it is convenient to handle. But it requires 29.3% more samples than the Body-Centered Cubic grid. In order to convince people used to Cartesian grids for years of the advantages of Body-Centered Cubic grids, we must prove their usability in many different volume rendering algorithms. Further we have to show that we get a performance gain without or with only slight loss of image quality compared to Cartesian grids. Therefore we introduce several practical reconstruction schemes on Body-Centered Cubic grids, which are very general and can be used in a number of applications and tasks. Together with the development of powerful and flexible consumer graphics hardware, interactive hardware-accelerated volume rendering algorithms gain popularity. Rendering performance becomes a big issue, which can be a strong argument in favour of Body-Centered Cubic grids. We adapted some of the most popular volume rendering approaches exploiting hardwareacceleration to Body-Centered Cubic grids: both 2D and 3D texture-based volume rendering and the projected tetrahedra algorithm. At least partly we succeeded in achieving a performance gain on our new grid and further produced some impressive rendering results comparable to the Cartesian grid version.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Practical Reconstruction and Hardware-Accelerated Direct Volume Rendering on Body-Centered Cubic Grids

In volume visualization, the Cartesian grid is by far the most popular type of grid because it is convenient to handle. But it requires 29.3% more samples than the BodyCentered Cubic grid. In order to convince people used to Cartesian grids for years of the advantages of BodyCentered Cubic grids, we must prove their usability in many different volume rendering algorithms. Therefore we introduce...

متن کامل

Fast Computed Tomography and Volume Rendering Using the Body-centered Cubic Lattice

Two main tasks in the field of volumetric image processing are acquisition and visualization of 3D data. The main challenge is to reduce processing costs, while maintaining high accuracy. To achieve these goals for volume rendering (visualization), we demonstrate that non-separable box splines for body-centered cubic (BCC) lattices can be adapted to fast evaluation on graphics hardware. Thus, t...

متن کامل

High-Quality Volumetric Reconstruction on Optimal Lattices for Computed Tomography

Within the context of emission tomography, we study volumetric reconstruction methods based on the Expectation Maximization (EM) algorithm. We show, for the first time, the equivalence of the standard implementation of the EM-based reconstruction with an implementation based on hardware-accelerated volume rendering for nearestneighbor (NN) interpolation. This equivalence suggests that higher-or...

متن کامل

Prefiltered B-Spline Reconstruction for Hardware-Accelerated Rendering of Optimally Sampled Volumetric Data

In this paper odd-order B-spline filters are proposed to reconstruct volumetric data sampled on an optimal Body-Centered Cubic (BCC) grid. To make these filters nearly interpolating, we adapt a previously published framework, which is based on a discrete frequency-domain prefiltering. It is shown that a BCC-sampled B-spline kernel is not invertible, therefore the interpolation constraint cannot...

متن کامل

Comparison of node-centered and cell-centered unstructured finite-volume discretizations. Part I: viscous fluxes

Discretization of the viscous terms in current finite-volume unstructured-grid schemes are compared using node-centered and cell-centered approaches in two dimensions. Accuracy and efficiency are studied for six nominally second-order accurate schemes: a node-centered scheme, cell-centered node-averaging schemes with and without clipping, and cell-centered schemes with unweighted, weighted, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005